

Church of St Michael Coslany Oak Street Norwich Norfolk

Tree-ring Analysis and Radiocarbon Wiggle-matching of Oak Timbers from the Chancel

Martin Bridge, Alex Bayliss, Michael Dee, and Sanne Palstra

Research Report Series no. 84/2022

Front Cover: View of the Church of St Michael Coslany from the south-east in Norwich. Photograph: Domenico D'Alessandro, Historic England

CHURCH OF ST MICHAEL COSLANY OAK STREET NORWICH NORFOLK

Tree-ring Analysis and Radiocarbon Wigglematching of Oak Timbers from the Chancel

Martin Bridge, Alex Bayliss, Michael Dee, and Sanne Palstra

NGR: TG 22828 08996

© Historic England

ISSN 2059-4453 (Online)

The Research Report Series incorporates reports by Historic England's expert teams and other researchers. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication.

For more information write to Res.reports@HistoricEngland.org.uk or mail: HistoricEngland, FortCumberland, FortCumberlandRoad, Eastney, Portsmouth PO4 9LD

Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

© HISTORIC ENGLAND

SUMMARY

Twelve oak timbers were sampled from the chancel roof. Only four samples had more than 60 rings, but some matching was found between ring-width series resulting in three groups of timbers being identified. A number of matches were found for the series composed of three timbers with a tentative end date of AD 1426, but these were not very strong, and were matched only with local chronologies, so were not accepted as an independent secure dendrochronological date.

Radiocarbon dating was undertaken on four single-ring samples from one of the timbers represented in the tentatively dated site master chronology. Wiggle-matching of these results suggests that the final ring of this sequence formed in *cal AD* 1419–1432 (95% probability) or *cal AD* 1422–1430 (68% probability).

The tentative matching identified for the site master chronology by ring-width dendrochronology is thus supported independently by the radiocarbon wiggle-matching, giving a chronology spanning AD 1339–1426_{DR}. The three timbers represented in this site master chronology, with a mean heartwood/sapwood boundary date of AD 1425_{DR}, were likely felled in the period of AD 1434–1466_{DR}.

CONTRIBUTORS

Martin Bridge, Cathy Tyers, Alex Bayliss, Michael Dee, and Sanne Palstra

ACKNOWLEDGEMENTS

We would like to thank EFL Roofing Contractors who were very helpful in gaining access to the timbers, and Oliver Chinn of Purcell, Norwich, gave useful background information. We would also like to thank Alison Arnold and Robert Howard of the Nottingham Tree-ring Dating Laboratory for the dissection of the core sample for radiocarbon dating. From Historic England we would like to thank Domenico D'Alessandro, East of England Region architect/surveyor, who requested the work and for his guidance throughout the project, Shahina Farid for commissioning and facilitating this programme of tree-ring analysis and Cathy Tyers for her input into this programme and the report, both of the Scientific Dating Team.

ARCHIVE LOCATION

Historic England Archive The Engine House Fire Fly Avenue Swindon SN2 2EH

HISTORIC ENVIRONMENT RECORD LOCATION Norfolk Historic Environment Record The Archive Centre Martineau Lane Norwich NR1 2DQ

DATE OF INVESTIGATION 2022

CONTACT DETAILS Martin Bridge Oxford Dendrochronology Laboratory Mill Farm Mapledurham Oxfordshire RG4 7TX marbrdg@aol.com

Alex Bayliss Historic England 4th Floor, Cannon Bridge House 25 Dowgate Hill London EC4R 2YA <u>alex.bayliss@historicengland.org.uk</u>

Michael Dee and Sanne Palstra Centre for Isotope Research University of Groningen Nijenborgh 6 9747 AG Groningen The Netherlands <u>m.w.dee@rug.nl</u> <u>s.w.l.palstra@rug.nl</u>

CONTENTS

.1
.1
.1
.1
.2
.3
.4
.5
.6
.9
13
9

INTRODUCTION

The Church of St Michael Coslany is a Grade I Listed redundant church (LEN 1372474 <u>here</u>), often considered to be the grandest of the churches in north Norwich (Fig 1) and noted for its flint flushwork of early sixteenth-century and nineteenth-century date. Internally there are arcade pillars of the late Perpendicular style. The chancel roof (Fig 2) of five bays is arch-braced with the wall posts terminating on corbels. The roof has been tentatively dated to around AD 1500, but repair works offered the opportunity to sample timbers from the stripped roof, and dendrochronology was requested by the Historic England architect Domenico D'Alessandro to inform repairs and gain a better understanding of the development of the church.

RING-WIDTH DENDROCHRONOLOGY

Sampling

An assessment of the timbers for dendrochronological potential sought accessible oak timbers with more than 50 rings and where possible traces of sapwood, although slightly shorter sequences are sampled if little other material is available. Those timbers judged to be potentially useful (Fig 3) were cored using a 16mm auger attached to an electric drill. The cores were labelled and stored for subsequent analysis.

Methodology

The cores were polished on a belt sander using 80 to 400 grit abrasive paper to allow the ring boundaries to be clearly distinguished. The samples had their treering sequences measured to an accuracy of 0.01mm, using a specially constructed system utilising a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC, which recorded the ring widths into a dataset. The software used in measuring and subsequent analysis was written by Ian Tyers (2004a). Cross-matching was attempted by a combination of visual matching and a process of qualified statistical comparison by computer. The ring-width series were compared for statistical cross-matching, using a variant of the Belfast CROS program (Baillie and Pilcher 1973). Ring sequences were plotted on the computer monitor to allow visual comparisons to be made between sequences. This method provides a measure of quality control in identifying any potential errors in the measurements when the samples cross-match.

In comparing one sample or site master against other samples or chronologies, *t*-values over 3.5 are considered significant, although in reality it is common to find demonstrably spurious *t*-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some *t*-value ranges of 5, 6, and higher, and for these to be well replicated from different, independent chronologies with both local and regional chronologies well represented, except where imported timbers are identified. Where two individual samples match together with a *t*-value of 10 or above, and visually exhibit exceptionally similar ring patterns, they may have originated from the same parent

tree. Same-tree derivation can also be identified through the external characteristics of the timber itself, such as knots and shake patterns. Lower *t*-values however do not preclude same tree derivation.

Once a tree-ring sequence has been firmly dated in time, a felling date, or felling date range, is ascribed where possible. With samples which have sapwood complete to the underside of, or including bark, this process is relatively straightforward. Depending on the completeness of the final ring (ie if it has only the spring vessels or early wood formed, or the latewood or summer growth) a precise felling date and season can be given. If the sapwood is partially missing, or if only a heartwood/sapwood boundary survives, then an estimated felling date range can be given for each sample. The number of sapwood rings can be estimated by using an empirically derived sapwood estimate with a given confidence limit. If no sapwood or heartwood/sapwood boundary survives then the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a *terminus post quem (tpq)* or felled-after date.

A review of the geographical distribution of dated sapwood data from historic timbers has shown that a sapwood estimate relevant to the region of origin should be used in interpretation, which in this area is 9–41 rings (Miles 1997, fig 5). It must be emphasised that dendrochronology can only date when a tree has been felled, not when the timber was used to construct the structure or object under study.

Results

The ring-width series (Table 1) were mostly quite short, with only four exceeding 60 rings. Two cores (mcos06 and mcos09) fractured, and have two measured sections each, an inner section designated (i), and an outer section (ii). In the case of mcos09, the break was thought to be clean, and a combined series was produced. Two samples were taken from mcos08 (a and b) to maximise the information gained; these matched at t = 6.0 with a 34 year overlap and were combined to make a single mean timber series. The ring-width data for all measured series are provided in the Appendix.

Some cross-matching was found between individual series (Figs 4a–c; Tables 2a–c) and three site chronologies were formed (mcos0204, mcos0305, and MCOSt3, the latter being the three-timber mean from samples mcos10, mcos11, and mcos12). All three site chronologies, and the unmatched individual series, were compared with the database of reference chronologies but only MCOSt3 gave any matches that were thought worthy of further investigation (Table 3), although these were relatively weak, and not well-replicated. They were, however, with one exception, all matched with local Norfolk chronologies.

There was a potential match noted between the two-timber mean sequence mcos0204 and MCOSt3. Combining these two ring-width master sequences led to an overall decrease in the levels of cross-matching with reference chronologies and it was notable that mcos0204 showed very little similarity with any reference

chronologies at this implied potential date. Hence this potential match between MCOSt3 and mcos0204 was not pursued.

RADIOCARBON DATING

Following the failure of the ring-width dendrochronology to provide secure calendar dating for site master chronology, MCOSt3, sample mcos11 was selected for radiocarbon dating and wiggle-matching. This core has 76 growth rings that span relative rings 13–88 of this tree-ring chronology (Fig 4c).

Radiocarbon dating is based on the radioactive decay of ¹⁴C, which trees absorb from the atmosphere during photosynthesis and store in their growth-rings. The radiocarbon from each year is stored in a separate annual ring. Once a ring has formed, no more ¹⁴C is added to it, and so the proportion of ¹⁴C versus other carbon isotopes reduces in the ring through time as the radiocarbon decays. Radiocarbon ages, like those in Table 4, measure the proportion of ¹⁴C in a sample and are expressed in radiocarbon years BP (before present, 'present' being a constant, conventional date of AD 1950).

Four radiocarbon measurements have been obtained from single annual tree-rings from timber mcos11 (Table 4; Fig 5). Dissection was undertaken by Alison Arnold and Robert Howard at the Nottingham Tree-Ring Dating Laboratory. Prior to subsampling, the core was checked against the tree-ring width data. Then each annual growth ring was split from the rest of the tree-ring sample using a chisel or scalpel blade. Each radiocarbon sample consisted of a complete annual growth ring, including both earlywood and latewood. Each annual ring was then weighed and placed in a labelled bag. Rings not selected for radiocarbon dating as part of this study have been archived by Historic England.

Radiocarbon dating was undertaken by the Centre for Isotope Research, University of Groningen (GrM-), the Netherlands in 2022. Each ring was converted to α-cellulose using an intensified aqueous pretreatment (Dee *et al* 2020) and combusted in an elemental analyser (IsotopeCube NCS), coupled to an Isotope Ratio Mass Spectrometer (Isoprime 100). The resultant CO₂ was graphitised by hydrogen reduction in the presence of an iron catalyst (Wijma *et al* 1996; Aerts-Bijma *et al* 1997). The graphite was then pressed into aluminium cathodes and dated by Accelerator Mass Spectrometry (AMS) (Synal *et al* 2007; Salehpour *et al* 2016).

Data reduction was undertaken as described by Wacker *et al* (2010), and the facility maintains a continual programme of quality assurance procedures (Aerts-Bijma *et al* 2021), in addition to participation in international inter-comparison exercises (Scott *et al* 2017; Wacker *et al* 2020). These tests demonstrate the reproducibility and accuracy of these measurements.

The results are conventional radiocarbon ages, corrected for fractionation using δ^{13} C values measured by Accelerator Mass Spectrometry (Stuiver and Polach 1977; Table 4).

WIGGLE-MATCHING

Radiocarbon ages are not the same as calendar dates because the concentration of ¹⁴C in the atmosphere has fluctuated over time. A radiocarbon measurement has thus to be calibrated against an independent scale to arrive at the corresponding calendar date. That independent scale is the IntCal20 calibration curve (Reimer *et al* 2020). For the period covered by this study, this is constructed from radiocarbon measurements on tree-ring samples dated absolutely by dendrochronology. The probability distributions of the calibrated radiocarbon dates from mcos11, derived from the probability method (Stuiver and Reimer 1993), are shown in outline in Figures 6 and 7.

Wiggle-matching is the process of matching a series of calibrated radiocarbon dates which are separated by a known number of years to the shape of the radiocarbon calibration curve. At its simplest, this can be done visually, although statistical methods are usually employed. Floating tree-ring sequences are particularly suited to this approach as the calendar age separation of tree-rings submitted for dating is known precisely by counting the rings in the timber. A review of the method is presented by Galimberti *et al* (2004).

The approach to wiggle-matching adopted here employs Bayesian chronological modelling to combine the relative dating information provided by the tree-ring analysis with the calibrated radiocarbon dates (Christen and Litton 1995). It has been implemented using the program OxCal v4.4

(<u>http://c14.arch.ox.ac.uk/oxcal.html</u>; Bronk Ramsey *et al* 2001; Bronk Ramsey 2009). The modelled dates are shown in black in Figures 6 and 7 and quoted in italics in the text. The Acomb statistic shows how closely the assemblage of calibrated radiocarbon dates as a whole agree with the relative dating provided by the tree-ring analysis that has been incorporated in the model; an acceptable threshold is reached when it is equal to or greater than An (a value based on the number of dates in the model). The A statistic shows how closely an individual calibrated radiocarbon date agrees its position in the sequence (most values in a model should be equal to or greater than 60).

Figure 6 illustrates the chronological model for mcos11. This model incorporates the gaps between each dated annual ring known from tree-ring counting (eg that the carbon in ring 15 of the measured tree-ring series (GrM-30238) was laid down 23 years before the carbon in ring 38 of the series (GrM-30239); Fig 5), with the radiocarbon measurements (Table 4) calibrated using the internationally agreed radiocarbon calibration data for the northern hemisphere, IntCal20 (Reimer *et al* 2020).

The model has good overall agreement (Acomb: 161.2, An: 35.4, n: 4; Fig 6), with all radiocarbon dates having good individual agreement (A > 60). It suggests that the final ring of mcos11, and thus the final ring of the site master sequence, MCOSt3, formed in *cal AD 1419–1432 (95% probability; mcos11 h/s*; Fig 6) *or cal AD 1422–1430 (68% probability)*.

When the last surviving ring of this timber is constrained to have formed in AD 1426, as suggested tentatively by the ring-width dendrochronology, the model again has good overall agreement (Acomb: 184.9, An: 31.6, n: 5; Fig 7), with all the radiocarbon dates again having good individual agreement (A > 60).

DISCUSSION

The radiocarbon wiggle-matching allows the tentative dating indentified by the ring-width dendrochronology to be considered as a radiocarbon supported dendrochronological date, with the site master chronology spanning AD 1339–1426_{DR}. The subscript _{DR} indicates that this is not a date determined independently by ring-width dendrochronology, and that the master sequence, MCOSt3, should not be utilised as a ring-width master sequence for dating other sites.

Adding the appropriate sapwood estimate (Miles 1997) to the last surviving ring of each dated timber, provides individual felling date estimates for each timber (Table 1; Fig 8). Given that the heartwood/sapwood boundaries of the two timbers that retain this ring in this chronology vary by only two years, however, it is possible to use the mean heartwood/sapwood boundary date of AD 1425_{DR} to provide a likely felling date range of AD 1434–66_{DR} for these common rafters, thus identifying the presence of timbers to around half a century earlier than the expected date of the roof.

A further pair of common rafters, mcos03 and mcos05, appear to be at least broadly coeval with each other, as do the principal rafter mcos02 and the common rafter mcos04, but the two site master chronologies represented by these two pairs of timbers remain undated.

The radiocarbon supported dendrochronological date is of interest as the ring-width matching with reference material was relatively weak, but the strongest matches found when compared with well over two thousand chronologies from all over England and Wales were, with one exception in Peterborough, with sites in Norfolk (Table 3). This suggests there may be some unique Norfolk microclimates, or other factors (soils, genetics etc) influencing growth of some sites in the area. A chronology from a church roof at Beeston-next-Mileham created several years ago (Bridge 2007) had over 90 rings and was internally well replicated, with no apparent anomalous growth patterns, but this also has so far remained undated.

REFERENCES

Aerts-Bijma, AT, Meijer, H, and van der Plicht, J, 1997 AMS sample handling in Groningen, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, **123**, 221–5 (<u>https://doi.org/10.1016/S0168-583X(96)00672-6</u>)

Aerts-Bijma, ATh, Paul, D, Dee, MW, Palstra, SWL, and Meijer, HAJ, 2021 An independent assessment of uncertainty for radiocarbon analysis with the new generation high-yield Accelerator Mass Spectrometers, *Radiocarbon*, **63**, 1–22 (<u>https://doi.org/10.1017/RDC.2020.101</u>)

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

Bridge, M C, 2007 St Mary's Church, Beeston-next-Mileham, Norfolk, Tree-ring Analysis of Timbers from the Nave Roof, English Heritage Res Dept Rep Series, **38/2007**

Bridge, M C, 2008 St Mary Magdalen's Church, Wiggenhall St Mary Magdalen, Norfolk, Tree-ring Dating Analysis of Timbers, English Heritage Res Dept Rep, **414/2008**

Bronk Ramsey, C, 2009 Bayesian analysis of radiocarbon dates, *Radiocarbon*, **51**, 37–60 (<u>https://doi.org/10.1017/S0033822200033865</u>)

Bronk Ramsey, C, van der Plicht, J, and Weninger, B 2001 'Wiggle matching' radiocarbon dates, *Radiocarbon*, **43**, 381–9 (<u>https://doi.org/10.1017/S0033822200038248</u>)

Christen, J A, and Litton, C D, 1995 A Bayesian approach to wiggle-matching, *J Archaeol Sci*, **22**, 719–25 (<u>https://doi.org/10.1016/0305-4403(95)90002-0)</u>

Cooper, RJ, Melvin, TM, Tyers, I, Wilson, RJS, Briffa, KR, 2012 A tree-ring reconstruction of East Anglian (UK) hydroclimate variability over the last millennium, *Climate Dynamics*, **40**, 1019–39

Dee, M W, Palstra, S W L, Aerts-Bijma, A T, Bleeker, M O, de Bruin, S, Ghebru, F, Jansen, H G, Kuitems, M, Paul, D, Richie, R R, Spriensma, J J, Scifo, A, von Zonneveld, D, Verstappen-Dumoulin, B M A A, Wietzes-Land, P, and Meijer, H A J, 2020 Radiocarbon dating at Groningen: new and updated chemical pretreatment procedures, *Radiocarbon*, **62**, 63–74 (<u>https://doi.org/10.1017/RDC.2019.101</u>)

Galimberti, M, Bronk Ramsey, C, and Manning, S, 2004 Wiggle-match dating of tree-ring sequences, *Radiocarbon*, **46**, 917–24 (<u>https://doi.org/10.1017/S0033822200035967</u>)

Miles, D H, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architect*, **28**, 40–56

Reimer, P J, Austin, W E N, Bard, E, Bayliss, A, Blackwell, P, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, R L, Friedrich, M, Grootes, P M, Guilderson, T P, Hajdas, I, Heaton, T J, Hogg, A G, Hughen, K A, Kromer, B, Manning, S W, Muscheler, R, Palmer, J G, Pearson, C, van der Plicht, J, Reimer, R W, Richards, D A, Scott, E M, Southon, J R, Turney, C S M, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, S, Fogtmann-Schultz, A, Friedrich, R, Kudsk, S, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, and Talamo, S, 2020 The IntCal20 Northern Hemispheric radiocarbon calibration curve (0–55 kcal BP), *Radiocarbon*, **62**, 725–57 (<u>https://doi.org/10.1017/RDC.2020.41</u>)

Salehpour, M, Håkansson, K, Possnert, G, Wacker, L, and Synal, H-A, 2016 Performance report for the low energy compact accelerator mass spectrometer at Uppsala University, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, **371**, 360–4 (<u>https://doi.org/10.1016/j.nimb.2015.10.034</u>)

Scott, E M, Naysmith, P, and Cook, G T, 2017 Should archaeologists care about ¹⁴C intercomparisons? Why? A summary report on SIRI, *Radiocarbon*, **59**, 1589–96 (<u>https://doi.org/10.1017/RDC.2017.12</u>)

Stuiver, M, and Polach, H A, 1977 Reporting of ¹⁴C data, *Radiocarbon*, **19**, 355–63 (<u>https://doi.org/10.1017/S0033822200003672</u>)

Stuiver, M, and Reimer, P J, 1993 Extended ¹⁴C data base and revised CALIB 3.0 ¹⁴C age calibration program, *Radiocarbon*, **35**, 215–30 (<u>https://doi.org/10.1017/S0033822200013904</u>)

Synal, H A, Stocker, M, and Suter, M, 2007 MICADAS: a new compact radiocarbon AMS system, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, **259**, 7–13 (<u>https://doi.org/10.1016/j.nimb.2007.01.138</u>)

Tyers, I, 2004a *Dendro for Windows Program Guide 3rd edn*, ARCUS Report, **500b**

Tyers, I, 2004b *The tree-ring analysis of timbers from Oxburgh Hall, Oxborough, Norfolk,* ARCUS Rep, **717L**

Tyers, I, 2004c Tree-ring analysis of oak boards and structural timbers from the Transepts, Prebytery, and Tower of Peterborough Cathedral, City of Peterborough, Centre for Archaeol Rep, **77/2004**

Tyers, I, 2004d *A report on the tree-ring analysis of properties in New Buckenham, Norfolk*, ARCUS Rep, **783**

Tyers, I, 2012 The tree-ring analysis of the rood screen at St Mary Magdalene, Silver Road, Norwich, formerly from St James, Pockthorpe, Norwich, Dendro Co Rep, **505**

Wacker, L, Christl, M, and Synal, H A, 2010 Bats: A new tool for AMS data reduction, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, **268**, 976–9 (<u>https://doi.org/10.1016/j.nimb.2009.10.078</u>)

Wacker, L, Scott, E M, Bayliss, A, Brown, D, Bard, E, Bollhalder, S, Friedrich, M, Capano, M, Cherkinsky, A, Chivall, D, Culleton, B J, Dee, M W, Friedrich, R, Hodgins, G W L, Hogg, A, Kennett, D J, Knowles, T D J, Kuitems, M, Lange, T E, Miyake, F, Nadeau, M-J, Nakamura, T, Naysmith, J P, Olsen, J, Omori, T, Petchey, F, Philippsen, B, Ramsey, C B, Prasad, G V R, Seiler, M, Southon, J, Staff, R, Tuna, T, 2020 Findings from an in-depth annual tree-ring radiocarbon intercomparison, *Radiocarbon*, **62**, 873–82 (<u>https://doi.org/10.1017/RDC.2020.49</u>)

Wijma, S, Aerts, A T, van der Plicht, J, and Zondervan, A, 1996 The Groningen AMS facility, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, **113**, 465–9 (<u>https://doi.org/10.1016/0168-583X(95)01420-9</u>)</u>

Table 1: Details of the samples taken from the chancel roof at the Church of St Michael Coslany, Norwich. The trusses and timbers had been previously numbered from the west end, N denoting the north side, and S the south side, so the trusses run ST1–6 and NT1-6, with common rafters being numbered from the west truss, hence common rafter ST1-3 is the third common rafter east of truss 1 on the south side

Sample	Location	Norings	Sapwood	Mean ring	Mean	Date (AD) or	Felling date (AD)
No				width (mm)	sensitivity	relative date	
mcos01	Principal rafter ST4	56	?h/s	2.15	0.31	-	-
mcos02	Principal rafter ST3	75	-	1.76	0.25	8-820204	-
mcos03	Common rafter ST4-3	50	?h/s	1.68	0.21	10-590305	-
mcos04	Common rafter ST3-2	57	?h/s	2.55	0.30	$1-57^{0204}$	-
mcos05	Common rafter NT5-3	53	?h/s	1.49	0.21	$1-53^{0305}$	-
mcos06i	Inner rings, principal rafter NT5	23	-	4.40	0.11	-	-
mcos06ii	Outer rings, principal rafter NT5	10	-	5.12	0.27	-	-
mcos07	Principal rafter NT6	59	h/s	2.33	0.22	-	-
mcos08a	Common rafter NT4-3	38	-	1.75	0.14	-	-
mcos08b	ditto	47	15	1.24	0.17	-	-
mcos08	Mean of 08a and 08b	51	15	1.46	0.16	-	-
mcos09i	Inner rings, principal rafter NT2	43	-	1.77	0.23	-	-
mcos09ii	Outer rings, principal rafter NT2	20	-	1.70	0.22	-	-
mcos09	Combined 09i and 09ii	63	-	1.75	0.23	-	-
mcos10	Common rafter NT1-2	86	h/s	1.59	0.22	1339–1424 _{DR}	AD 1433-65 _{DR}
mcos11	Common rafter NT1-4	76	h/s	2.17	0.25	1351-1426 _{DR}	AD 1435–67 _{DR}
mcos12	Common rafter NT3-2	54	-	2.11	0.21	1369-1422 _{DR}	after AD 1431 _{DR}

Key: h/s = heartwood/sapwood boundary; h/s = possible heartwood/sapwood boundary; 0204 = relative years within mcos0204; 0308 = relative years within mcos0204; 0308 = relative years within mcos0305

Table 2a: Cross-matching between samples mcos02 and mcos04

t-value / years overlap					
Sample No	mcos04				
mcos02	7.6/50				

Table 2b: Cross-matching between samples mcos03 and mcos08

t-value / years overlap						
Sample No	mcos05					
mcos03	5.7/44					

Table 2c: Cross-matching between samples mcos10, 11, and 12 (forming MCOSt3)

	t-value / years overlap							
Sample No	mcos11	mcos12						
mcos10	5.3/74	6.8/54						
mcos11		7.6/54						

Source region:	Chronology name:	Publication	File name:	Span of	Overlap	<i>t</i> -value
		reference:		chronology	(years)	
				(AD)		
Norfolk	Oxburgh Hallwest range	Tyers 2004b	OXWR_T6	1221-1427	88	6.2
Norfolk	New Buckenham	Cooper <i>et al</i> 2012	NEWBUCK1	1271–1472	88	5.6
Norfolk	Wiggenhall St Mary Magdalen	Bridge 2008	WGGNHLL	1278-1394	56	5.2
Cambridgeshire	Peterborough Cathedral Presbytery	Tyers 2004c	PCF6-T4	1208-1500	88	5.2
Norfolk	New Buckenham Old Vicarage*	Tyers 2004d	NBOV-T5	1271–1451	88	5.2
Norfolk	Norwich St James Pockworth rood screen Helen	Tyers 2012	OS0729A	1332-1436	88	5.2
Norfolk	New Buckenham Oak and Yellow Cottages*	Tyers 2004d	NBOY-T3	1346–1472	81	4.8
Norfolk	Norwich St James Pockworth rood screen Blida	Tyers 2012	OS0729B	1326-1448	88	4.5

Table 3: Potential matches between series MCOSt3 and dated reference material at AD 1339–1426

* - components of New Buckenham (Cooper *et al* 2012)

Laboratory Number	Sample	Radiocarbon Age(BP)
GrM-30238	mcos11, ring 15 (Quercus sp., heartwood)	643±17
GrM-30239	mcos11, ring 38 (Quercus sp., heartwood)	628±18
GrM-30241	mcos11, ring 52 (Quercus sp., heartwood)	564±18
GrM-30244	mcos11, ring 72 (Quercus sp., heartwood)	513±17

Table 4: Radiocarbon measurements from oak sample mcos11

FIGURES

Figure 1: Maps to show the location of the Church of St Michael Coslany in Norwich, Norfolk, in red. Scale: top right 1:13,000; bottom 1:1,600. © Crown Copyright and database right 2022. All rights reserved. Ordnance Survey Licence number 100024900 © HISTORIC ENGLAND 13

Figure 2: View of the south slope of the chancel roof (looking east), showing the exposed rafters (photograph Martin Bridge)

Figure 3: Sketch plan of the roof (not to scale) indicating the rafters sampled (red). Note there are four common rafters in the three western bays, and only three common rafters in the two eastern bays

© HISTORIC ENGLAND

84-2022

Figure 4a: Plots of the two matching ring series, mcos02 (black; relative years 8–82) and mcos04 (red; relative years 1–57), showing the similarity in growth and their relative overlaps. The y-axis is ring width (mm) on a logarithmic scale, the x-axis is relative years.

Figure 4b: Plots of the two matching ring series, mcos03 (black; relative years 10– 59) and mcos05 (red; relative years 1–53), showing the similarity in growth and their relative overlaps. The y-axis is ring width (mm) on a logarithmic scale, the xaxis is relative years.

Figure 4c: Plots of the three matching ring series, mcos10 (black; relative years 1– 86), mcos11 (red; relative years 13–88), and mcos12 (blue; relative years 31–84), showing the similarity in growth and their relative overlaps. The y-axis is ring width (mm) on a logarithmic scale, the x-axis is relative years.

Figure 5: Schematic illustration of sample mcos11 to locate the single-ring subsamples submitted for radiocarbon dating (h/s = heartwood/sapwood boundary)

Figure 6: Probability distributions of dates from sample mcos11. Each distribution represents the relative probability that an event occurs at a particular time. For each of the dates two distributions have been plotted: one in outline, which is the simple radiocarbon calibration, and a solid one, based on the wiggle-match sequence. Distributions other than those relating to particular samples correspond to aspects of the model. For example, the distribution 'mcos11 h/s' is the estimated date when the heartwood/sapwood boundary of timber mcos11 formed. The large square brackets down the left-hand side along with the OxCal keywords and the description of the sapwood estimates in the text defines the overall model exactly

Figure 7: Probability distributions of dates from mcos11, including the tentative date produced by ring-width dendrochronology for the formation of its last surviving ring in AD 1426. The format is identical to that of Fig 5. The large square brackets down the left-hand side along with the OxCal keywords and the description of the sapwood estimates in the text defines the overall model exactly

Figure 8: Bar diagram showing the relative positions of overlap of the components of MCOSt3 with their estimated likely felling date ranges. White bars = heartwood rings

APPENDIX

Ring width values (0.01mm) for the sequences measured											
mcos01											
161	285	182	261	301	362	263	359	291	263		
282	306	225	449	166	138	301	155	204	164		
95	105	56	99	92	115	120	145	193	242		
396	209	235	210	186	258	179	202	174	157		
254	201	117	214	179	157	231	272	192	224		
176	145	213	387	210	270	201	2/2	172	227		
170	140	210	507	210	270						
mcos02											
358	189	191	393	351	321	286	259	196	298		
320	314	437	458	356	94	79	80	131	67		
108	73	67	127	155	128	175	122	116	147		
109	76	95	83	118	100	66	63	59	162		
173	133	126	109	149	171	364	241	182	211		
118	150	128	135	92	138	134	148	151	157		
171	161	227	112	150	176	167	219	229	239		
229	159	130	152	119	1/0	10/		>	_ 07		
mcos	:03										
88	96	110	135	106	63	77	75	94	89		
78	87	69	107	80	37	79	147	100	88		
125	155	179	193	217	230	194	236	206	179		
251	298	286	331	258	234	313	234	229	227		
158	194	224	207	247	207	173	199	182	204		
mcos	s04										
314	400	571	695	174	80	74	90	162	228		
408	450	489	431	238	305	436	542	533	484		
517	286	108	84	60	87	86	90	78	69		
144	179	173	234	300	183	186	229	102	111		
113	182	241	122	116	111	281	350	342	238		
193	169	229	418	408	268	321					
mcos											
152	182	141	135	92	82	90	80	65	83		
76	77	132	82	53	94	88	97	89	108		
69	54	77	47	39	67	100	157	142	166		
180	228	297	272	286	190	210	212	139	156		
179	198	239	191	206	272	254	265	264	159		
195	198	210									
	0										
mcos		o <i>i i</i>	oc -	oc -	000	010	0.01	000	00 -		
198	201	244	327	335	303	318	381	328	307		
374	378	410	387	379	324	510	720	742	767		
737	701	753									

mcos 443	06ii 474	610	803	793	456	220	450	462	412
mcos	07								
426	408	361	321	303	255	201	274	339	263
404	349	217	265	299	242	397	252	343	200
177	141	119	127	230	217	169	200	194	314
315	183	120	127 123	172	187	137	139	114	117
137	116	105	213	184	125	138	186	230	263
229	283	314	402	313	301	148	166	230 160	205
22)	200	014	102	010	501	140	100	100	
mcos	08a								
261	238	229	179	173	187	137	116	129	115
93	96	118	157	183	199	164	178	147	195
189	149	151	188	165	212	131	144	162	166
147	150	175	239	236	224	269	244		
]								
mcos		100			110	(0)	60	<i>(</i> 0	-
100	142	109	82	116	112	68	68	60	76
107	124	134	122	126	159	125	120	112	150
120	150	102	113	130	124	125	128	137	190
222	175	182	148	124	106	119	85	151	147
113	117	128	127	109	106	126			
mcos	09i								
194	172	344	240	220	179	249	178	137	278
203	246	194	187	101	156	229	212	145	152
136	143	197	218	214	162	140	188	169	145
112	106	197	183	172	93	93	85	124	158
180	188	193	200		10	10	00		200
200	100	270							
mcos	09ii								
165	172	137	158	158	173	197	206	281	294
284	320	83	148	75	102	95	91	130	123
mcos	10								
229	248	155	118	74	157	252	165	296	212
199	160	340	243	207	204	202	186	290 147	122
76	100 179	161	2 1 3 214	310	268	202 279	250	193	122
98	1/9	88	105^{214}	134	208 140	113	230 90	193 94	121 105
87	101	128	105	104	140 79	87	105	141	163
167	121	128	121 100	103	75	73	95	116	105
107	208	170	188	175	188	196	199	162	159
251	149	117	176	230	119	123	85	102	120
133	157	232	194	234	251	120	00	111	120
100	107	-02	± / I	_01	-01				

mcos	511								
308	320	241	214	117	148	105	111	87	122
185	192	227	202	194	265	210	117	97	121
150	129	172	193	216	148	102	150	121	285
296	246	237	152	182	220	219	332	283	324
262	148	137	136	169	149	166	152	234	508
294	390	246	312	367	462	271	243	371	284
216	218	378	257	183	131	100	146	167	232
244	324	280	287	190	130				
mcos	512								
114	103	130	174	227	245	202	120	135	157
158	210	267	236	258	139	174	221	282	362
310	343	229	153	137	108	137	144	157	136
165	283	223	234	203	267	289	371	257	259
306	219	206	207	259	183	200	136	135	212
175	305	242	277						

Historic England Research and the Historic Environment

We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Reports' database replaces the former:

Ancient Monuments Laboratory (AML) Reports Series The Centre for Archaeology (CfA) Reports Series The Archaeological Investigation Report Series and The Architectural Investigation Reports Series.